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Abstract
We study the asymptotic macroscopic properties of the mixed majority–
minority game, modelling a population in which two types of heterogeneous
adaptive agents, namely ‘fundamentalists’ driven by differentiation and ‘trend-
followers’ driven by imitation, interact. The presence of a fraction f of trend-
followers is shown to induce (a) a significant loss of informational efficiency
with respect to a pure minority game (in particular, an efficient, unpredictable
phase exists only for f < 1/2), and (b) a catastrophic increase of global
fluctuations for f > 1/2. We solve the model by means of an approximate static
(replica) theory and by a direct dynamical (generating functional) technique.
The two approaches coincide and match numerical results convincingly.

PACS numbers: 05.10.Gg, 87.23.Ge, 02.50.Le

1. Introduction

In recent years, a substantial amount of research has been focused on model systems
of heterogeneous adaptive agents interacting competitively, as e.g. in games, markets or
ecosystems, in the attempt to understand the mechanisms by which real systems create
exploitable information, and to clarify the origin of their complex collective behaviour [1].
The minority game, with its several variants, is perhaps the most studied of such models [2].
In its simplest version, it describes a population of inductive players with fully heterogeneous
beliefs who, at each round of the game, make their strategic decisions on the basis of some
public information pattern (the ‘state of the world’) aiming to be in the minority group. The
minority-wins mechanism, which originally served the purpose of modelling competition
for a scarce resource, translates into a strong assumption on the behavioural traits and
expectations of players. Indeed, it turns out that in order to maximize their expected utilities
under the minority rule, agents have to enhance their initial heterogeneity and differentiate
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themselves as much as possible from each other. This is rather intuitive: if agents were to
learn to make decisions similarly to each other, being in a minority would become a rather
unlikely event. On the other hand, one might also consider another tendency that is often
encountered in real agents, namely that towards imitation, say of an agent who believes that
his/her payoff is maximized when he/she acts according to the majority. In this paper, we
consider a mixed majority–minority game, to study the effects of competition in a population
formed by two types of players, i.e. those whose short-term behaviour is driven by imitation
(who play a majority game), and those who are instead anti-imitative (and play a minority
game).

From the viewpoint of economic modelling, our system represents a simple abstraction
for a market where two classes of economic agents, namely ‘fundamentalists’ and ‘trend-
followers’, interact. The former—see [3, 4] for details—create their expectations under
the assumption that the market price is close to its ‘fundamental’ value, i.e. to a stationary
equilibrium, and correspond to minority game players. The latter, instead, extrapolate a trend
from recent price increments and assume that the next increment will occur in the direction
of the trend (see also [5, 6]); they correspond to majority game players. In real markets,
fundamentalists act as a kind of elastic force that pulls the price towards its fundamental value,
while trend-followers destabilize the market by driving the price away from it. They are in
particular widely believed to be the main actors in the infamous buy rushes known as ‘bubbles’.
Modelling the interplay between trend-followers and fundamentalists is a basic issue in the
theory of markets, and several models have been proposed (see e.g. [5–8] and references
therein). In most cases, however, an insight can be gained only from numerical simulations
due to the complexity of the microscopic definitions. The minority game provides a basic
framework for a tractable class of models (for another minority-game-based market model
with two different types of agents, ‘speculators’ and ‘producers’, see [9]). The mixed model
we consider here has indeed the advantage of being simple enough to be analytically solvable
via the methods of statistical mechanics, notwithstanding its phenomenological richness. In
particular, the effects due to the presence of trend-followers, namely a loss of informational
efficiency and an increase of fluctuations, are fully discernible.

From a strictly theoretical viewpoint, the majority game is an intriguing model in itself,
that shares some features with the Hopfield model of neural networks [10]. Surprisingly, it
has not received much attention so far [11]. We will see that, at odds with what happens in the
minority game, all agents taking part in a majority game actually manage to find a best strategy
among those at their disposal and stick to it. One would hence be tempted to question the
necessity of a multi-strategy, minority-game-like setup for a majority game. It will however
become clear, particularly from the dynamical calculation, that such a ‘freezing’ is highly
non-trivial and requires an in-depth analysis. Other interesting features of the majority game,
such as the existence of a phase with finite excess demand in the presence of a particular state
of the world (the analogue of a ‘retrieval’ phase in neural networks) are not considered here
but certainly deserve attention. Some are the subject of [12].

This work is organized as follows. The basic definitions of the model are given in
section 2, together with an outline of the results. The static approximation to the analysis of
the asymptotic macroscopic properties is expounded in section 3. It is based on the formal
analogy with zero-temperature spin glasses first derived in [13] for the pure minority game,
whose stationary states were shown to be (approximately) given by the minima of a random
Hamiltonian. In our case, the resulting optimization problem is slightly more subtle and its
solution requires a negative dimensional replica theory of the kind already used for ‘minimax
games’ [14], close in spirit to the method of partial annealing [15]. Section 4 is devoted to
the dynamical solution of the ‘batch’ version of the model, which is carried out employing
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the generating functional technique [16] along the lines of [17, 18]. Some details about this
calculation are given in the appendix. Finally, in section 5, we formulate our conclusions.

2. Definitions and outline of the results

The setup we consider is as follows. There are N players and P possible information patterns.
For each player i ∈ {1, . . . , N} two strategies aig : {1, . . . , P } � µ → a

µ

ig ∈ {−1, +1} are
given (g = 1, 2) that map an information pattern µ into a binary trading action a

µ

ig (‘buy/sell’).
(The generalization to S strategies per agent is possible but it is analytically less convenient.)
We assume as usual that P scales with N so that P/N = α remains finite in the relevant limit
N → ∞ and that each a

µ

ig is selected randomly with uniform probability in {−1, 1} at the
beginning of the game for all i, µ and g and fixed. Strategies are evaluated according to their
‘performance’ pig(n). At each round n, players receive an information pattern µ(n) chosen at
random with uniform probability in {1, . . . , P } [19, 20]. Subsequently, each player picks his
so-far best-performing strategy, g̃i(n) = arg maxgpig(n), and formulates the bid it prescribes,

i.e. a
µ(n)

ig̃i (n). The aggregate action of all players at round n (in economic terms, the ‘excess
demand’) is just

A(n) = 1√
N

∑
i=1,N

a
µ(n)

ig̃i (n). (1)

Once A(n) is known, majority (resp. minority) game players reward their strategies for which
a

µ(n)

ig A(n) > 0 (resp. a
µ(n)

ig A(n) < 0). Hence the performance updating or learning process
takes place according to1

pig(n + 1) − pig(n) = εia
µ(n)

ig A(n) (g = 1, 2) (2)

where εi = −1 for minority game players and εi = +1 for majority game players, and the
game moves into the next round. The εi can be seen as an additional family of quenched r.v.
(besides the a

µ

ig) with probability density P(εi) = f δεi ,+1 + (1 − f )δεi ,−1.
It is convenient to introduce the ‘preferences’ yi(n) = (pi1(n) − pi2(n))/2 and the

quantities ξ
µ

i = (
a

µ

i1 − a
µ

i2

)/
2, ω

µ

i = (
a

µ

i1 + a
µ

i2

)/
2 and �µ = N−1/2 ∑

i=1,N ω
µ

i , which
measure the degree to which each agent’s strategies are similar or dissimilar. Using these, (2)
can be recast as an equation for yi(n):

yi(n + 1) − yi(n) = εiξ
µ(n)

i

�µ(n) +
1√
N

∑
j=1,N

ξ
µ(n)

j sj (n)

 (3)

where si(n) = sign[yi(n)]. When yi(n) > 0 (resp. yi(n) < 0) agent i selects strategy g = 1
(resp. g = 2) and si(n) = +1 (resp. si(n) = −1). As in the pure minority game, this
stochastic (Markovian) dynamics is a zero-temperature process that violates detailed balance,
so that strictly speaking it has no Lyapunov function.

One is interested in characterizing the macroscopic (N → ∞) properties of the stationary
state (if any exists) of (3). Two quantities have been introduced with this aim. As a measure
of global efficiency we take the ‘volatility’

σ 2 = 〈A2〉 = lim
T →∞

1

T − Teq

∑
n=Teq,T

A(n)2 (4)

that is, the magnitude of market fluctuations (it can be shown that 〈A〉 = 0 when N → ∞).
Intuitively, the higher the efficiency the smaller the σ 2. As a reference value, it is reasonable to
1 We assume that players ignore their market impact, i.e. that they behave as price takers [21].



8938 A D Martino et al

take σ 2 = 1, which corresponds to ‘random players’ who at each round randomize uniformly
between the two possible actions. When σ 2 < 1 one can say that agents are, to some degree,
cooperating. From the viewpoint of information creation, the relevant quantity is instead the
‘predictability’ or ‘available information’

H = 1

P

∑
µ=1,P

〈A|µ〉2 with 〈A|ν〉 = lim
T →∞

1

T − Teq

∑
n=Teq,T

A(n)δµ(n),ν (5)

whose meaning is discussed at length in the literature (see e.g. [21, 22]). The idea is that when
H > 0 there exists at least one state of the world, say µ, such that 〈A|µ〉 �= 0, i.e. for which
there is an action that is more likely to be the winning action. An external agent entering
the game could hence exploit this information to have a gain. The fact that H > 0 signals
an inefficiency of the market. Regimes with H > 0 are dubbed ‘asymmetric’, at odds with
‘symmetric’ ones with H = 0 where the game’s outcome is not predictable.

In the limit N → ∞, σ 2 and H depend on α (as in the pure minority game) and f .
Computer simulations of (3) suggest the following scenario (see figure 1). For f < 1/2, a
minority-game type of behaviour is recovered, with an asymmetric phase (H > 0) at high
α separated by a symmetric one (H = 0) at low α. The transition point αc decreases as f

increases, hence the symmetric phase shrinks as more and more trend-followers join the game,
indicating that they provide an additional exploitable ‘signal’. Market fluctuations tend to the
random limit σ 2 = 1 for large α and decrease with α until the critical point is reached. In the
sub-critical phase, the stationary state depends strongly on the initial conditions of (3), and
both high-volatility and low-volatility states can be reached starting from slightly different
configurations2. For f > 1/2, instead, trend-followers dominate the game and σ 2 decreases
steadily with α and f . The market is asymmetric (H > 0) for all α and the difference between
σ 2 and H diminishes as f increases. For f = 1, one has σ 2 = H . We found that σ 2 is
practically independent of the initial conditions. The case f = 1/2 possesses some special
features and will be treated separately [23]. Let it suffice to say that simulation results give
σ 2 	 1 with H showing a slow decrease with α. Unfortunately, reliable numerical experiments
at α < 0.01 are quite costly. So the precise analysis of this case requires additional studies.
The theory we present here provides qualitative agreement with these experiments, but it is
likely that in the f = 1/2 case a more refined analysis is possible.

In order to get some theoretical insight, one can follow the line of reasoning adopted for
the pure minority game, for which it was shown by constructing the continuous-time limit of
(3) that the average asymptotic value of si , denoted by mi , can be obtained by minimizing the
random function

H(m) = N

P

∑
µ=1,P

[
�µ +

1√
N

∑
i=1,N

ξ
µ

i mi

]2

(6)

where m = {mi}. (Note that the mi are ‘soft’ spins: −1 � mi � 1. Note also that an
expansion of the square in (6) ultimately clarifies that terms like

∑
µ ξ

µ

i ξ
µ

j play the role of
random couplings while

∑
µ ξ

µ

i �µ acts as a random field.) We will not discuss here the
limitations of this approximation and refer the reader to the original literature [13, 24–29] for
a critical discussion. In the limit N → ∞, this problem could be tackled using spin-glass
techniques, because

lim
N→∞

min
m

H(m)

N
= − lim

β→∞
lim

N→∞
1

βN
log Z(β) (7)

2 Note, however, that if the initial conditions yi(0) contain a sufficiently large bias towards one of the strategies, all
players will always use the same strategy, which will result in the ‘random trading’ state with σ 2 = 1.
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Figure 1. Behaviour of σ 2 and H versus α for f = 0, 0.25, 0.75, 1. Markers represent results from
numerical simulations with homogeneous initial conditions, averaged over 200 disorder samples.
The dashed vertical lines give the location of αc (from theory). Continuous (resp. dashed) lines
represent analytical approximations for σ 2 (resp. H), valid only for α > αc . Results for H are
compared with the static approximation of section 3, while those for σ 2 are compared with the
dynamical results of section 4. The logarithmic scale on the y-axis in the upper panels has been
used to stress the dependence of σ 2 on the initial conditions for α < αc .

(here, Z(β) = ∫
e−βH dm and the over-line denotes an average over disorder, i.e. over different

realizations of the agents’ strategies). The evaluation of log Z requires the replica trick [30].
For α > αc,H has a unique minimum, hence the stationary state can be fully described by the
replica-symmetric solution of (7).

This argument can be reformulated for the pure majority game. The corresponding
optimization problem turns out to be

max
m

H(m) or equivalently min
m

−H(m). (8)

A few comments are in order. First, it is easy to see that H = H/N , which implies that minority
game players roughly tend to minimize the available information, while majority ones tend
to maximize it. Second, at odds with H, −H possesses many minima, hence the stationary
state of the majority game will always depend on the initial conditions of the dynamics (even
though the macroscopic observables σ 2 and H might take on the same or very similar values in
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all minima). Based on well-known properties of the Hopfield model [10], one expects the true
minima of −H to be described by solutions of (8) that break replica symmetry. Moreover, as
happens in attractor neural networks with extensively many patterns, a ‘retrieval’ phase is to
be expected for small enough α where, due to correlations between the initial conditions and
one specific pattern, say µ = 1, the overlap oµ(m) = N−1/2 ∑

i=1,N ξ
µ

i mi is O(N−1/2), and
vanishing as N → ∞, for all µ except µ = 1, for which it is finite. The fact that agents can
‘condense’ around a given pattern implies that every time that pattern is presented to them a
buy (or sell) rush takes place. Solving (8) is hence a non-trivial task in itself, and requires a
detailed study [12].

Generalizing to our case, one finds that the stationary mi for the mixed majority–minority
model can be obtained by solving the following problem:

max
m2

min
m1

H(m1,m2) (9)

where m1 (resp. m2) denote collectively the mi variables of minority (resp. majority) game
players. Hence the mixed game where both minority and majority players are present at
the same time requires a minimization of H in certain directions (the minority ones) and a
maximization in others (the majority ones). Again, this problem can be tackled by a replica
theory. The idea [14] is to introduce two ‘inverse temperatures’ β1 and β2 for minority and
majority players respectively, such that

max
m2

min
m1

H(m1,m2) = lim
β1,β2→∞

1

β2
logZ(β1, β2) (10)

with the following generalized partition function:

Z(β1, β2) =
∫

dm2 eβ2[− 1
β1

log
∫

dm1e−β1H] =
∫

dm2

[∫
dm1 e−β1H

]−γ

(11)

where γ = β2/β1 > 0. In physical jargon, this describes a system where: first, the m1

variables are thermalized at a positive temperature 1/β1 with Hamiltonian H at fixed m2;
then, the m2 variables are thermalized at a negative temperature −1/β2 with an effective
Hamiltonian Heff defined by −β1Heff(m2) = log

∫
dm1 e−β1H. The disorder average can be

carried out with the help of a ‘nested’ replica trick. First, one replicates the minority variables
by treating the exponent −γ as a positive integer R (at the end, the limit R → −γ < 0 must
be taken). Equation (11) thus becomes

Z =
∫

dm2

[∫
dm1 e−β1H

]R

=
∫

dm2

[∫
e−β1

∑
r H({mr

1},m2)
∏

r=1,R

dmr
1

]
. (12)

Then a second replication is needed (we remind the reader that replica theories use the fact
that log Z = limn→0(1/n) log Zn), this time on the m2 variables:

Zn =
∫

e−β1
∑

a,r H({mar
1 },{ma

2})
∏

a=1,n

∏
r=1,R

dmar
1 dma

2. (13)

At this point we have two replica indices with different roles: the a replicas have been
introduced to deal with the disorder, and their number n will eventually go to zero, as usual;
the r replicas have been introduced to deal with the negative temperature, and their number R
must be set to a negative value. This kind of limit is not completely new in replica theories; it is
what is usually done for example to express determinants via a bosonic integral representation
(see for instance [31] for a discussion and [32] for an application). Majority variables bear
just one index, while minority ones have two. We can interpret this fact by saying that ma

2
indicates a particular configuration of the majority variables, i.e. a given manifold in the whole
m space; and mar

1 indicates the minority coordinates in that particular manifold.
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In section 3 we will solve (10) in the limit N → ∞ using (13) as a starting point.
Retrieval solutions for the majority part become increasingly important as f gets bigger. We
will however neglect this aspect (which in the mixed case leads to a serious lengthening)
completely. As retrieval requires that the system is prepared in specific initial conditions,
one can say that we study the evolution from generic initial states. Results obtained in this
way give a very good agreement with numerical simulations. It is important to say that
macroscopic quantities such as the volatility might be different in a retrieval situation. And,
of course, the latter is expected to play a very important role for phenomena that are local
in time (like ‘bubbles’). Besides this static approximation, we will also tackle the dynamics
(3) straightforwardly, resorting to the generating-functional method to carry out the disorder-
average [16]. Again, we will neglect the possibility of retrieval. Following [17], we will
focus on the ‘batch’ version of the model. Dynamical results obtained in this way turn out
to coincide nicely with their static counterpart and suggest that the transition occurring at αc

for f < 1/2 is related essentially to the onset of anomalous response, as in the pure minority
game. We will calculate the critical line αc(f ), showing that αc ↓ 0 as f ↑ 1/2. For f > 1/2,
the response is always finite and the macroscopic properties are dominated by the contribution
of trend-followers.

3. Statics

To begin with, let us re-write the Hamiltonian (6) as

H(m1,m2) = 1

P

∑
µ=1,P

∑
i=1,N

ω
µ

i +
∑
j∈N1

ξ
µ

j m1j +
∑
k∈N2

ξ
µ

k m2k

2

(14)

where N1 (resp. N2) denotes both the set and the cardinality of the set of minority
(resp. majority) game players. The replicated Hamiltonian entering (13) is

H
({

mar
1

}
,
{
ma

2

}) = 1

P

∑
µ=1,P

∑
i=1,N

ω
µ

i +
∑
j∈N1

ξ
µ

j mar
1j +

∑
k∈N2

ξ
µ

k ma
2k

2

. (15)

We can linearize the exponential in (13) via a Hubbard–Stratonovich transformation
introducing some auxiliary Gaussian variables z

µ
ar . Subsequently, the average over the disorder

can be performed using the distribution P
(
a

µ

ig

) = 1/2
(
δa

µ

ig,1
+ δa

µ

ig,−1

)
(g = 1, 2) and the

definitions of ω
µ

i and ξ
µ

i . One obtains

Zn =
∫ [∏

a,r

dmar
1 dma

2

][∏
µ,a,r

dz
µ
ar√

2π

]
exp

[
−
∑

µ

∑
ar

(
z
µ
ar

)2

2

]
exp

− β1

2α

∑
µ

∑
abrs

zµ
arz

µ

bs

×
1 + (1 − f )

1

N1

∑
j∈N1

mar
1jm

bs
1j + f

1

N2

∑
k∈N2

ma
2km

b
2k

. (16)

It is now convenient to define the overlaps

Qar,bs = 1

N1

∑
j∈N1

mar
1jm

bs
1j and Pab = 1

N2

∑
k∈N2

ma
2km

b
2k (17)

inserting them in (16) via δ-distributions with Lagrange multipliers Q̂ar,bs and P̂ab. Note that
the overlap matrices Q and P are nR-dimensional and n-dimensional, respectively. In this
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way the site dependence can be dealt with, so that after a little algebra one gets (all numerical
factors are ‘hidden’ in the D(·, ·) shorthand)

Zn =
∫

eNS(Q,Q̂,P,̂P)D(Q, Q̂)D(P, P̂) (18)

where the effective action S is given by (a, b = 1, . . . , nR; r, s = 1, . . . , R)

S(Q, Q̂, P, P̂) = −α

2
log det T − i[(1 − f ) Tr(Q̂Q) + f Tr(̂PP)]

+ (1 − f ) log
∫ +1

−1

[∏
a,r

dm
a,r
1

]
exp

[
i
∑
abrs

mar
1 Q̂ar,bsm

bs
1

]

+ f log
∫ +1

−1

[∏
a

dma
2

]
exp

[
i
∑
ab

ma
2P̂abm

b
2

]
with

T = InR +
β1

α
[EnR + (1 − f )Q + f P ⊗ ER]. (19)

IK stands for the K ×K identity matrix while EK denotes the K ×K matrix with all elements
equal to 1. ⊗ is the Kronecker product. In (19) one can easily recognize some parts coming
from the minority agents (those proportional to (1 − f )) and others coming from the majority
agents. These contributions are not factorized (in that event, the mixed problem would be
trivial) but are interconnected via the determinant of T.

To proceed further, one has to formulate ansätze for the overlap matrices and then perform
the integral (18) in the limit N → ∞ by the steepest descent method. Let us first arrange Q
in a convenient matrix form. We choose to order the indices in such a way that each row is
characterized by a couple (a, r); along the row, the index a is first kept fixed while r varies
from 1 to R. Q is thus naturally subdivided into blocks of size R × R, the blocks along the
diagonal corresponding to a given value of a = b. We recall that keeping a fixed corresponds
to selecting, in the global configuration space, a well-defined manifold with m2 = ma

2 inside
which H is minimized with respect to the m1 variables. Qar,as can thus be interpreted as the
overlap between two configurations of the same constrained minority problem. It is natural
to assume for these diagonal sub-blocks the same matrix structure of a pure minority game,
that is a symmetric form with a diagonal element Q and an off-diagonal one q1. On the other
hand, elements of the type Qar,bs with a �= b correspond to overlaps between two minority
configurations in different majority manifolds, and the simplest choice one can make is to take
Qar,bs = q0 for all of them. In this way Q assumes what is called a one-step RSB (replica
symmetry broken) form [30]:

Qar,bs = (Q − q1)δabδrs + (q1 − q0)εarbs + q0 (20)

where the tensor εarbs is equal to 1 in the diagonal R × R blocks with a = b, and 0 elsewhere.
Note that, contrary to standard replica calculations, here the block size R is not a variational
parameter, but its value is fixed by the nature of the problem. For consistency, we adopt the
same ansatz for the conjugated matrix Q̂. The choice for the n × n matrices P and P̂ is on the
other hand more straightforward: we will consider the simple replica-symmetric ansatz

Pab = (P − p0)δab + p0 (21)

and take an analogous form for P̂.
Putting (20) and (21) into (19), and using the conventional re-scalings Q̂ = (−iβ2

1α
/

2
)
�

and P̂ = (−iβ2
1α
/

2
)
G, the ‘free energy’ density F = −S/(β1n) turns out to be given, in the
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limit n → 0, by

F = αR

2β1
log

[
1 + (1 − f )

β1

α
(Q − q1)

]
+

β1Rα(1 − f )

2
[�Q + (R − 1)ω1q1 − Rω0 q0]

+
α

2β1
log

[
1 + Rβ1

(1 − f )(q1 − q0) + f (P − p0)

α + (1 − f )β1(Q − q1)

]
+

β1α

2
f (GP − g0 p0)

+
αR

2

1 + (1 − f )q0 + fp0

[α + (1 − f )β1(Q − q1)] [Rβ1(1 − f )(q1 − q0) + f (P − p0)]

− 1 − f

β1

∫
dzP(z) log

∫
dy P(y)

[∫ 1

−1
dm1 e−β1Vzy(m1)

]R

− f

β1

∫
dzP(z) log

∫ 1

−1
dm2 e−β1Vz(m2) (22)

where P(x) = e−x2/2/
√

2π and

Vzy(m1) = −z
√

αω0ym1

√
α(ω1 − ω0) − αβ1

2
(� − ω1)m

2
1 (23)

Vz(m2) = −√
αg0zm2 − αβ1

2
(G − g0)m

2
2. (24)

The replica recipe now prescribes an extremization of (22) with respect to its ten variational
parameters (namely Q, q0, q1, P , p0 and their conjugate variables), because when N → ∞

lim
N→∞

max
m2

min
m1

H
N

= lim
β1,β2→∞

F(saddle point)

R
. (25)

This leaves us with a set of ten equations in ten variables. Defining

χ1 = β1

α
(Q − q1) − β2

α
(q1 − q0) (26)

χ2 = β2

α
(P − p0) (27)

χ = (1 − f )χ1 − f χ2 (28)

and using the shorthand

〈〈· · ·〉〉 =
∫

dzP(z)

[∫
dy P(y)

[
QR−1

∫ 1
−1 dm1 · · · e−β1Vyz(m1)

]∫
dy P(y)[QR]

]
(29)

Q = ∫ 1
−1 dm1 e−β1Vyz(m1) being a normalization integral, and

〈· · ·〉2 =
∫ 1
−1 dm2 · · · e−β1Vz(m2)∫ 1

−1 dm2 e−β1Vz(m2)
(30)

we find the following system:

Q = 〈〈
m2

1

〉〉
(31)

β1Rq1 + β1(Q − q1) = 〈〈ym1〉〉√
α(ω1 − ω0)

(32)

αχ1 = 〈〈zm1〉〉√
αω0

(33)
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β1(� − ω1) = − 1

α + β1(1 − f )(Q − q1)
(34)

ω1 − ω0 = (1 − f )(q1 − q0) + f (P − p0)

α(1 + χ)[α + β1(1 − f )(Q − q1)]
(35)

ω0 = 1 + (1 − f )q0 + fp0

α2(1 + χ)2
(36)

P = 〈
m2

2

〉
2 (37)

g0 = R2ω0 (38)

αχ2 = −R
〈zm2〉2√

αg0
(39)

β1(G − g0) = − R

α(1 + χ)
. (40)

Some observations about these equations are in order. First, if we set f = 0 we recover
exactly the saddle-point equations for a pure minority game problem at inverse temperature
β1. With regard to the χ , it will soon become clear that χ1 is the susceptibility of minority
agents and, when f = 0, it reproduces the susceptibility of a pure minority game, while χ2

is the susceptibility of majority agents. On the other hand, χ is not the global susceptibility.
This is a consequence of the fact that in order to treat minority and majority players within the
same formalism we had to introduce the effective negative inverse temperature −β2.

Solving the above system at finite temperature(s) is a quite difficult task. Fortunately,
in this case we are only interested in the limit of zero temperature(s), in which the solution
of (31)–(40) turns out not to depend explicitly on R, provided G and g0 are rescaled by R2.
Specifically, we look for solutions with q0 → q1 → Q and p0 → P such that χ1, χ2 and χ

remain finite. These assumptions are justified for minority variables by the existence of just
one global minimum of H (which also means that the minimum is unique in each manifold
with given m2). On the other hand, they are more questionable for majority variables, since
the maxima of H are numerous and disconnected (they occur in the corner of the configuration
space [−1, 1]N ). However, they are the simplest possible in the absence of retrieval states.
We will adopt them for this reason, but it should be kept in mind that they may not be the most
appropriate ones in general.

After some algebra, the set of saddle-point equations can be greatly simplified, because,
as in [21], when β1, β2 → ∞ the averages (29) and (30) can be explicitly performed by
steepest descent. The result for the relevant quantities is

P = 1 (41)

Q = 1 −
√

2

π

e− λ2

2

λ
−
(

1 − 1

λ2

)
erf

λ√
2

(42)

αχ

1 + χ
= (1 − f ) erf

λ√
2

− f

√
2

π
λ (43)

with λ = √
α/[1 + (1 − f )Q + f ]. The identity P = 1 implies that majority agents use only

one of their strategies, i.e. that the stationary state of a pure majority game is in pure strategies.
We define

c = (1 − f )Q + f. (44)
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Figure 2. Critical line separating the asymmetric, inefficient phase with H > 0 from the symmetric
one with H = 0 in the (f, α) plane. As α ↓ αc(f ), χ → ∞.

H can be expressed in terms of all saddle-point values since H/N = H . Using (25) and taking
the limit R → −1 (this is equivalent to taking the limit β1 → β2 followed by β2 → ∞) one
finds

H = 1 + c

2(1 + χ)2
. (45)

The existence of a transition at some critical value of α is determined by the divergence of χ

(which means that H becomes 0). From (43) we find for αc the following expression:

αc(f ) = (1 − f ) erf(x) − 2f x√
π

(46)

where x is the solution of

2 − (1 − f ) erf(x) − 1 − f

x
√

π
e−x2

+
f

x
√

π
= 0. (47)

Solving the above equations numerically for different f one obtains a very good agreement
with the behaviour of H (see figure 1). The critical line αc calculated from (46), (47) is
instead displayed in figure 2. The symmetric phase shrinks upon increasing the fraction of
majority agents and disappears for f > 1/2. It is interesting to note that a similar phenomenon
was found in [9] upon increasing the number of ‘producers’. Both majority agents here and
producers in [9] use just one of their strategies, hence providing an exploitable signal to
minority agents. This makes the market more and more informationally inefficient.

It should be mentioned that an approximate expression for σ 2 can also be obtained,
σ 2 	 H + (1 − c)/2, but it is not as accurate as that for H. A better estimate of σ 2 is obtained
by solving the dynamics. As a last remark, let us note that for a pure majority game one gets,
from (36)–(39) and from the fact that 〈zm2〉2 = √

2/π ,

χ2 = 1

1 +
√

απ
and H = (1 − χ2)

−2. (48)

The expression for χ2 is identical (apart from a numerical factor) to that of the Hopfield model
at zero temperature [33].

4. Dynamics

Let us turn our attention to the dynamics. For simplicity, we concentrate on the ‘batch’ case
[17], which is obtained by averaging (3) over the µ and re-scaling time. This amounts to
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considering the case in which performance updates are made after many (O(P )) iterations
rather than at the end of every round. One arrives at

yi(t + 1) − yi(t) = εihi + εi

∑
j=1,N

Jij sj (t) (49)

where hi = (2/
√

N)
∑

µ=1,P ξ
µ

i �µ and Jij = (2/N)
∑

µ=1,P ξ
µ

i ξ
µ

j . The stationary state
of (49) is not identical to that of (3) (strictly speaking, not even for N → ∞), but the
corresponding macroscopic properties are qualitatively very similar. Moreover, the dynamical
solution of (49) is significantly simpler than that of (3).

The dynamical approach consists in introducing a dynamical partition function of (49) as

Z[ψ] =
〈
ei
∑

it yi (t)ψi (t)
〉
paths

(50)

where the average is over the ‘paths’ yi(t) that satisfy (49) and the external sources ψi(t)

have been introduced for later convenience. Using the integral representation of the Dirac δ

distribution to enforce the dynamical constraint (49), Z becomes

Z[ψ] =
∫

ei
∑

it ŷi (t)[yi (t+1)−yi (t)−εihi−εi

∑
j Jij sj (t)−θi (t)]+yi (t)ψi (t)p(y(0))D(y, ŷ ) (51)

where the ŷi are the variables coming from the δ-function’s integral representation, and
D(y, ŷ ) = ∏

it [dyi(t) d̂yi(t)/(2π)] and θi is a time-dependent external field. In principle,
dynamical methods allow us to calculate disorder-averaged correlation and response functions
exactly at all times by taking derivatives of the disorder-averaged Z, i.e.

Z[ψ] =
∫

ei
∑

it ŷi (t)[yi (t+1)−yi (t)−θi (t)]+yi (t)ψi (t)+NF(ŷ )p(y(0))D(y, ŷ ) (52)

F(ŷ ) = 1

N
log

[
e−i

∑
it ŷi (t)εi [hi+

∑
j Jij sj (t)]

]
(53)

with respect to the fields ψi and θi [16, 34, 35], and have the advantage of not relying on
the existence of a Lyapunov function. The evaluation of Z in the limit N → ∞ leads to
an effective (non-Markovian) process that provides an equivalent description of the original
(Markovian) multi-agent process (49), and from which a closed set of equations for correlation
and response functions can be derived. Here, we will be interested in the stationary solutions
only. The calculation is in our case rather similar to that done for the pure batch minority
game in [17], and is sketched in the appendix. The main difference is that here we obtain two
effective processes, describing trend-followers and fundamentalists respectively. These are
given by

y(t + 1) − y(t) = αε
∑

t ′
[(I + G)−1]t t ′s(t

′) + θ(t) +
√

αz(t) (54)

where ε = 1 (resp. −1) for the majority (resp. minority) part, and z(t) is a zero-average
Gaussian random variable with temporal correlations

〈z(t)z(t ′)〉 = [(I + G)−1(E + C)(I + GT )−1]t t ′ (55)

I stands for the identity matrix while E denotes the matrix with all elements equal to one.
C has elements Ctt ′ = 〈s(t)s(t ′)〉. G, instead (see appendix for details), is the sum of two
contributions:

G = (1 − f )G1 − f G2. (56)
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G1 (resp. G2) has elements 〈∂s(t)/∂θ(t ′)〉−1 (resp. 〈∂s(t)/∂θ(t ′)〉1) where the subscript means
average over the process (54) with ε = −1 (resp. 1). When N → ∞, Ctt ′ can be identified with
the disorder- and agent-averaged autocorrelation function of (49), while the two components
of Gtt ′ become identical to the disorder- and agent-averaged response functions of minority
and majority agents, respectively.

Ergodic stationary states can be studied under the following assumptions:

• Time-translation invariance (TTI):

{
limt→∞ Ct+τ,t = C(τ)

limt→∞ Gt+τ,t = G(τ)
;

• Finite integrated ‘response’ (FIR): limt→∞
∑

t ′�t Gtt ′ = χ < ∞;
• Weak long-term memory (WLTM): limt→∞ G(t, t ′) = 0 ∀t ′ finite.

The breakdown of any of these signals the breakdown of ergodicity. To be clearer, we remark
that the ‘integrated response’ χ defined in FIR has two components, i.e.

χ = (1 − f )χ1 − f χ2 (57)

and can be negative. χ1 and χ2 are the actual susceptibilities of minority and majority agents,
respectively. With FIR, we will require that both χ1 and χ2 are finite.

As in the minority game, for individual agents there are two possibilities: either
yi(t)/t → constant �= 0 as t → ∞, in which case they use only one of their strategies
asymptotically (we call these agents ‘frozen’); or yi(t)/t → 0 as t → ∞, in which case
they keep flipping between their strategies even in the long run (we call these agents ‘fickle’).
Macroscopic quantities can be obtained by separating the contributions of frozen and fickle
agents.

Defining ỹ = limt→∞ y(t)/t , s = limτ→∞(1/τ)
∑

t�τ sign[y(t)/t] and z =
limτ→∞(1/τ)

∑
t�τ z(t), one has that

ỹ = αεs

1 + χ
+

√
αz + θ = √

αεγ s +
√

αz + θ. (58)

Let us assume that γ > 0 (this assumption is verified a posteriori). For minority game players
(ε = −1), we have a frozen agent (with s = sign(̃y)) if |z| > γ and a fickle or non-frozen
agent (with s = z/γ ) if |z| < γ [17]. In the majority part, all agents turn out to be frozen.
In particular, for z > γ agents freeze at s = 1, for z < −γ they freeze at s = −1, while
for |z| < γ they can freeze at either value of s. It follows that the average autocorrelation
c = limτ→∞ 1

τ

∑
t�τ C(t) is given by

c = (1 − f )

[
〈θ(|z| − γ )〉 +

〈
θ(γ − |z|)

(
z

γ

)2
〉]

+ f

= (1 − f )

[
1 − erf

λ√
2

+
1

λ2

(
erf

λ√
2

− λ

√
2

π
e−λ2/2

)]
+ f (59)

where we have separated the contributions of minority agents from majority agents, used the
notation 〈 〉 for the average over Gaussian r.v. z with variance

〈z2〉 = lim
τ,τ ′→∞

1

ττ ′
∑

t�τ,t ′�τ ′
[(I + G)−1(E + C)(I + GT )−1]t t ′ = 1 + c

(1 + χ)2
(60)

and defined λ = √
α

1+c
. This expression for c agrees with the replica result (44). For the

fraction φ of frozen agents one obtains

φ = (1 − f )〈θ(|z| − γ )〉 + f = 1 − (1 − f ) erf
λ√
2
. (61)

In figure 3 analytical results for c and φ are compared with simulations.
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Figure 3. Persistent autocorrelation c (left) and fraction of frozen agents φ (right) for various
f. Lines correspond to the analytic solutions from (59) and (61), markers are the results from
numerical simulations. Vertical lines give, for f < 1/2, the positions of the critical points αc

below which the stationary state (hence c and φ) depends on initial conditions.

The ‘susceptibility’ (57) can instead be calculated from the formula

χ = (1 − f )
〈sz〉min√

α〈z2〉 − f
〈sz〉maj√

α〈z2〉 (62)

where 〈sz〉min (resp. 〈sz〉maj) denotes the average over z of the product sz for minority
(resp. majority) agents. The above expression follows directly from the fact that, because the
noise term and the external field enter (54) in the same way (apart from a

√
α factor), response

functions for minority (resp. majority) agents can be obtained as α−1/2〈∂ sign[y(t)]/∂z(t ′)〉−1

(resp. α−1/2〈∂ sign[y(t)]/∂z(t ′)〉1), after an integration by parts and a time average [17]. For
the minority part, sz = |z| for |z| > γ and sz = z2/γ otherwise, so that

〈sz〉min = 〈θ(|z| − γ )|z|〉 +

〈
θ(γ − |z|)z

2

γ

〉
= 1 + c√

α(1 + χ)
erf

λ√
2
. (63)

To calculate the majority part, one must fix the value of sz for −γ � z � γ , where s can be
either +1 or −1 (for |z| > γ one has sz = |z| in any case). The choice is apparently arbitrary
so that, in principle, there are several possibilities. While it is clear that each of them describes
a different ‘freezing’ situation for the individual agents, for instance concerning the growth of
their respective preferences, it is not completely clear to us which is the more appropriate in
general. We concentrate here on two extreme cases.

First, we assume that s = sign(z). This assumption is the most natural for continuity
reasons. One has

〈sz〉maj = 〈|z|〉 =
√

2

π

√
1 + c

(1 + χ)2
. (64)

This leads to
αχ

1 + χ
= (1 − f ) erf

λ√
2

− f λ

√
2

π
. (65)

χ diverges (hence FIR is violated and ergodicity is broken) when the fraction φ = 1 − φ of
fickle agents satisfies φ = α + f λ

√
2/π or, equivalently, at the critical values of α given by

the equation

αc(f ) = (1 − f ) erf(x) − 2f x√
π

(66)
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where x is the solution of

2 − (1 − f ) erf(x) − 1 − f

x
√

π
e−x2

+
f

x
√

π
= 0. (67)

Equations (65)–(67) are in full agreement with the replica results of section 3.
Another possibility is to calculate 〈sz〉maj without making any special assumption on s for

−γ � z � γ . This brings us to a situation where (64)–(66) are substituted respectively by

〈sz〉maj = 〈θ(z + γ )z〉 − 〈θ(γ − z)z〉 = e−λ2/2

√
2

π

√
1 + c

(1 + χ)2
(68)

αχ

1 + χ
= (1 − f ) erf

λ√
2

− f λ

√
2

π
e−λ2/2 (69)

αc(f ) = (1 − f ) erf(x) − 2f x√
π

e−x2
(70)

where x now solves

2 − (1 − f ) erf(x) − 1 − 2f

x
√

π
e−x2 = 0. (71)

The value of φ at which χ diverges is now φ = α + f λ e−λ2/2√2/π . Note that the extra
exponential factor one obtains in this way does not change numerical results for αc significantly
(indeed, it changes by less than 0.0015). This is quite remarkable. However, one must note
also that for a purely majority game (recalling that χ2 = −χ ) one gets for the susceptibility

χ2 = e−α/4/
√

απ

1 + e−α/4/
√

απ
(72)

instead of the Hopfield-like formula (48). In both cases, χ2 → ∞ when α ↓ 0, but the
corresponding pictures (and volatilities, see below) are slightly different. In the following, we
stick to the latter formula mainly because it provides a better agreement with numerical results
for σ 2 at f = 1, but the question of which susceptibility describes a pure majority game more
accurately is an important point that might deserve further investigation.

For the stationary volatility, which reads [17]

σ 2 = 1

2
lim
t→∞[(I + G)−1(E + C)(I + GT )−1]t t (73)

one can use the approximate method of [17] to derive an expression in terms of the persistent
parameters χ and φ, which holds for α > αc:

σ 2 = 1 + φ

2(1 + χ)2
+

1

2
(1 − φ). (74)

Solving for χ , φ and c for different f and substituting one obtains the volatility branches
displayed in figure 1, which are again in excellent agreement with simulations.

5. Summary and outlook

To summarize, we have studied the mixed majority–minority game with random external
information. Neglecting ‘retrieval’ (i.e. the possibility that trend-followers flock in the
presence of a particular information pattern), we have first calculated the stationary state of
the dynamics from a static approximation via a negative-replica theory. Then we have solved
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the dynamics using generating functional methods. The two approaches match nicely and agree
with numerical results for the macroscopic observables σ 2 and H in a satisfactory way. Our
results also indicate that when fundamentalists outnumber trend-followers, the macroscopic
behaviour of the system (‘phase transition’ with ergodicity breaking from an inefficient phase
at high α to an efficient one at low α) can be explained by the onset of anomalous response, that
is by a divergence of the integrated response, as in the pure minority game. We have calculated
the line of critical points in the (f, α) plane showing that the inefficient phase gets larger as
f increases. When trend-followers dominate, instead, the system is always inefficient and
low volatility states disappear. As a byproduct, we have provided an approximate static and
dynamical solution of the majority game. A greater effort is nevertheless needed in order to
incorporate the possibility of ‘herding’ in both the replica theory and the path-integral solution.
We expect retrieval states to exist at low α for any f > 0. It is also likely that RSB occurs
at very low α when f > 0 (in the pure minority game, RSB is known to take place for any
non-zero market impact [21, 36, 37]).

Let us finally remark some aspects of the present model that can be criticized and hence
improved. In the first place, all players can in principle win at the same time, which is a clearly
unrealistic situation (albeit extremely unlikely in our disordered setup with N → ∞). This
means that we do not consider a situation where agents are competing for a scarce resource,
or that, in other words, the presence of majority game players can turn a minority game from
being a negative-sum game to a possibly positive-sum game. The nature of our game is
hence totally different from that of the pure minority game, and one may even question the
effectiveness of σ 2 as a measure of global efficiency. We have stuck to σ 2 because it measures
the amplitude of the relevant aggregate quantity of our model (namely the excess demand A)
and is therefore what most resembles the ‘volatility’ in market models with a price dynamics.
This is the customary magnitude of market fluctuations, which is a widely accepted measure
even for real markets, because after all it provides a quantitative and yet intuitive understanding
of how the presence of trend-followers alters the macroscopic behaviour of the system (see
[8] for an example of a detailed market model where this effect is analysed).

The second point concerns time scales. In a market a large buy rush today is justified
by the belief that tomorrow the price will rise again so that for instance one will be able to
sell at a higher price. So in a majority game it would perhaps be more correct to measure the
effectiveness of a trading decision made today by what the payoff will be tomorrow [5, 6].
In other words, a player making a trading decision ai(n) at round n should receive a payoff
ui(n+1) = ai(t)A(n+1) at round n+1. Instead, in our model, his payoff is ui(n) = ai(n)A(n).

A further point is related to our use of random external information. It is known that
trend-following behaviour is self-enforcing, in the sense that if everyone believes that a certain
stock price will rise and buys some stocks, the price will actually rise. This scenario might
repeat for long times, suggesting that bubbles are strongly connected to the fact that agents
react to the real market history, rather than to particular initial biases in their preferences. So
for a majority game substituting the latter with random information might be a hazardous,
though useful, assumption. On the other hand, it should also be noted that in our setting
where agents are not allowed to switch from being trend-followers to being contrarians one
can also partly justify the use of random history: in a real market model it is the price history
which, at certain times, ‘creates’ a flock of trend-followers; in our model we do not need such
a mechanism because we have it fixed in the model definition.

Finally, we stress again that our aim was not to to build a realistic model of a market,
but a simple abstraction for a system where trend-followers and fundamentalists interact,
which is analytically tractable and possesses interesting non-trivial features that go in the
direction of the phenomena observed in real markets. More realistic and complex market
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models should take into account the dynamics of the preferences and the dynamics of the
price, this last being completely absent in our model. In models of this sort (see for example
[5–9]) the agents’ behaviour and their payoff functions are based on the price history. As
regards the agents’ character, there may be different kinds of agents in such models such as
speculators and producers, whose aims (i.e. utility functions) are assumed as different and
who play on different time scales. Besides, it is reasonable that a single agent not only has
different strategies of action, but also can behave sometimes as a fundamentalist and at other
times as a trend-follower (or trend adverse) depending on the price history. It is in this case
the global dynamics, i.e. the dynamics of the agents coupled with the dynamics of the price,
that determines endogenously which strategies are played and consequently defines temporary
groups of players (fundamentalists, trend-followers, etc). In this respect we understand what
are at present the main limitations of our model: (a) we assume that no agent can switch from
being fundamentalist to trend-follower, and (b) we postulate the same time horizons for all
the agents. Future work may improve our analysis in this direction, both allowing for agents
playing on different time scales and for looking at a generalization of the present model where
the εi are dynamical (annealed) variables in order to give agents the possibility of changing
their character.
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Appendix. Generating functional analysis

The disorder average of (51) is expected to generate two-time player-averaged functions of
the si and ŷi variables only. We focus on

Ltt ′ = 1

N

∑
i=1,N

ŷi(t )̂yi(t
′) (75)

Qtt ′ = 1

N

∑
i=1,N

si(t)si(t
′) (76)

Ktt ′ = − 1

N

∑
i=1,N

εisi(t )̂yi(t
′). (77)

The matrix K can be seen as formed by two components, for minority and majority agents,
respectively:

K = (1 − f )K1 − f K2. (78)

Forcing the above definitions inside Z via δ-functions with the proper N-scaling and
assuming that p(y(0)) = ∏

i=1,N p(yi(0)), we find (with the shorthand D(X, X̂) =∏
t t ′ dXtt ′ dX̂tt ′/(2π))

Z[ψ] =
∫

eN(�+�+�)D(Q, Q̂)D(L, L̂)D(K, K̂) (79)
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where �(Q, Q̂, L, L̂, K, K̂) = i Tr[Q̂T Q + L̂T L + K̂T K],

�(Q̂, L̂, K̂) = 1

N

∑
i=1,N

log
∫

D(y, ŷ )p(y(0)) ei
∑

t ŷ(t)[y(t+1)−y(t)−θi (t)]+y(t)ψi (t)

× e−i
∑

t t ′ [s(t)Q̂tt ′ s(t ′)+̂y(t)L̂tt ′ ŷ(t ′)−εi s(t)K̂tt ′ ŷ(t ′)] (80)

and �(Q, L, K) = F(ŷ ). To calculate the latter, it suffices to make use of the definitions of hi

and Jij and to introduce, via δ-functions, the parameters

x
µ
t =

√
2

N

∑
i=1,N

si(t)ξ
µ

i and w
µ
t = −

√
2

N

∑
i=1,N

εi ŷi(t)ξ
µ

i . (81)

It turns out that the relevant term for the disorder average is

ei
√

2
∑

tµ w
µ
t �µ−i

√
2
N

∑
iµ ξ

µ

i

∑
t [̂x

µ
t si (t)−ŷi (t)εi ŵ

µ
t ] = e− 1

2

∑
t t ′µ(w

µ
t w

µ

t ′ +ŵ
µ
t Ltt ′ ŵ

µ

t ′ +̂x
µ
t Qtt ′ x̂

µ

t ′ +2̂x
µ
t Ktt ′ ŵ

µ

t ′ ) (82)

so that finally one has (with D(z, ẑ ) = ∏
t dxt d̂xt/(2π))

�(Q, L, K) = α log
∫

D(x, x̂ )D(w, ŵ)

× ei
∑

t (xt x̂t +wt ŵt +xtwt )− 1
2

∑
t t ′ [wtwt ′ +ŵtLtt ′ ŵ

µ

t ′ +̂xtCtt ′ x̂t ′ +2̂xtKtt ′ ŵt ′ ] (83)

where all integrals are from −∞ to +∞.
In the limit N → ∞ the dominant contribution to Z[ψ] comes from the saddle point

described by the equations

iQ̂tt ′ = −∂Qtt ′ � iL̂tt ′ = −∂Ltt ′ � iK̂tt ′ = −∂Ktt ′ � (84)

Qtt ′ = 〈s(t)s(t ′)〉∗ Ltt ′ = 〈̂y(t )̂y(t ′)〉∗ Ktt ′ = −〈εis(t )̂y(t ′)〉∗ (85)

where

〈h(s, y, ŷ )〉∗ = 1

N

∑
i=1,N

∫
h(s, y, ŷ )M

εi

i (s, y, ŷ )D(y, ŷ )∫
M

εi

i (s, y, ŷ )D(y, ŷ )
(86)

with

M
εi

i (s, y, ŷ ) = p(y(0)) ei
∑

t ŷ(t)[y(t+1)−y(t)−θi (t)]+y(t)ψi (t)

× e−i
∑

t t ′ [s(t)Q̂tt ′ s(t ′)+̂y(t)L̂tt ′ ŷ(t ′)−εi s(t)K̂tt ′ ŷ(t ′)]. (87)

It can be checked by a direct calculation (e.g. following [17]) that, at the relevant saddle
point,

Qtt ′ = Ctt ′ ≡ 1

N

∑
i=1,N

〈si(t)si(t ′)〉paths and Ltt ′ = 0. (88)

As for Ktt ′ , one can define −iK = G and see, for instance by taking the derivative of 〈si(t)〉paths

with respect to θi(t
′), that

G = (1 − f )G1 − f G2 (89)

where G1 is the response function of minority agents, with elements

G
(1)
tt ′ = 1

N1

∑
i∈N1

∂

∂θi(t ′)
〈si(t)〉paths (90)

and similarly G2 is the response function of majority agents.
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Setting the generating field ψi to zero and assuming that θi(t) = θ(t), we can now treat
minority agents (εi = −1) and majority agents (εi = 1) separately. We get

�ε = log
∫

ei
∑

t ŷ(t)[y(t+1)−y(t)−θ(t)] e−i
∑

t t ′ [s(t)Ĉtt ′ s(t ′)+̂y(t)L̂tt ′ ŷ(t ′)−εs(t)K̂tt ′ ŷ(t ′)]p(y(0))D(y, ŷ )

(91)

where we set Q̂ = Ĉ; the measure M
εi

i instead becomes

Mε(s, y, ŷ ) = p(y(0)) e−i
∑

t t ′ s(t)Ĉtt ′ s(t ′) e−i
∑

t t ′ ŷ(t)L̂tt ′ ŷ(t ′)+i
∑

t ŷ(t)[y(t+1)−y(t)−θ(t)+ε
∑

t ′ K̂T
tt ′ s(t)].

(92)

M1 and M−1 represent majority and minority agents, respectively. The above ∗-average can
now be conveniently recast as the sum averages over the minority and majority processes,

〈 〉∗ = (1 − f )〈 〉−1 + f 〈 〉1 (93)

where the −1- and 1-averages are performed with the measures M−1 and M1, respectively.
The saddle-point equations for Ĉ, L̂ and K̂ are identical to those found for the pure batch
minority game [17]. The result is

Ĉtt ′ = 0 K̂T
tt ′ = −α[(I − iK)−1]t t ′

(94)
L̂tt ′ = − 1

2 iα[(I − iK)−1(E + C)(I − iKT )−1]t t ′

where Itt ′ = δtt ′ and Ett ′ = 1. Substituting these into Mε one obtains

Mε(s, y, ŷ ) = p(y(0)) e− 1
2 α
∑

t t ′ ŷ(t)[(I−iK)−1(E+C)(I−iKT )−1]t t ′ ŷ(t ′)

× ei
∑

t ŷ(t)[y(t+1)−y(t)−θ(t)−αε
∑

t ′ [(I−iK)−1]t t ′ s(t)]. (95)

Recalling that K = iG, it turns out that the disorder-averaged correlation and response functions
for minority and majority agents are obtained as averages over the coloured effective stochastic
processes (54) with ε = −1 and ε = 1, respectively.
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